
Mainframe passwords revisited: 
impact of new security mechanisms

Costin Enache, Chad Rikansrud, Nigel Pentland

GSE UK Security Working Group – 4th February 2021

This slide deck: ~20 minutes
Panel discussion and Q&A: ~40 minutes



Who are we?
• Chad Rikansrud
IT security consultant, Director of North American Consulting Services for BMC, performing 
mainframe security assessments, exploit development, and penetration tests for some of the 
world's largest organizations for 20+ years. chad_rikansrud@bmc.com

• Nigel Pentland
Senior Security Analyst at NAB, retired. The authority on mainframe passwords for many years and 
the author of the original analytics tools that saved many of us. nigel@nigelpentland.net

• Costin Enache
IT security consultant and occasional developer, MD at Detack.de, been working with mainframe 
security for 20+ years; author of EPAS, a toolset for password analytics that includes RACF with 
KDFAES support. costin@detack.de



1976

Masked passwords DES as password
default

1994 2006

Password phrases 
(strange DES-?BC)*

Salted! DES 
encryption option

1984 2005

Mixed case passwords
etc.

History

2014

APAR OA43999 KDFAES 
(secret algorithm) + specials

*IBMUSER:AGoodPassword2001 = AGoodPassword2002 = 1D80A5E7A1C14709DD0C44377CBD8303E0

2015

KDFAES algorithm 
“discovered”

2017

KDFAES in hashcat 
OpenCL (non-public)



The KDFAES Algorithm
• Step #1: Calculate input for key derivation, Ki

Passwords: Ki[8] = Old DES password = DES(K=password, In=username); permits one-way migration of old DES

Password phrases: Ki[40] = SHA256(phrase) + length(phrase); no migration possible for DES phrases

• Step #2: Key derivation based on custom IBM version of PBKDF2-SHA256; 45008 rounds*

Kd = IBM-PBKDF2-SHA256(RANDOM_SALT[16],Ki,45008)

• Step #3: Encrypt, by using AES256, the user name with the derived key

Hash[32] = AES256(K=Kd, In=username) + RANDOM_SALT[16]

• The icing on the cake: It is quantum-safe  Both SHA256 and AES256 are believed to be safe.

*The algorithm includes 2 parameters (memory and repetition factors) which can be customized and get stored 

within the hash. This allows the key derivation step to be future-proof, i.e., get slower. Not in use for now, but if 

maxed out, the computation time is increased ~4500 times

Link: https://github.com/openwall/john/blob/bleeding-jumbo/src/racf_kdfaes_fmt_plug.c 



The Tools: Cluster, Big Server, Amazon EC2

• 6 x GPU Worker Cluster

• 10 x GPU Worker, Single Unit

• 1 x Amazon EC2 p3.16xlarge 

Examples based on 1xGPU



DES Performance: Brute Force
DES: Brute Force Probing

Upper Case

Standard Character Set

8-Character Password

Users: 1

Guaranteed Recovery: 13 min

Worker: 1 x Nvidia 3090 GPU



KDFAES Performance: Brute Force
KDFDES: Brute Force Probing

Upper Case

Standard Character Set

8-Character Password

Users: 1

Guaranteed Recovery: 858 days

Worker: 1 x Nvidia 3090 GPU



DES Performance: Wordlist
DES: Wordlist Probing

Upper Case

Standard Character Set

8-Character Password

Users: 100

Dictionary: 35,136,034

Complete Keyspace: 5 seconds

Worker: 1 x Nvidia 3090 GPU



KDFAES Performance: Wordlist
KDFDES: Wordlist Probing

Upper Case

Standard Character Set

8-Character Password

Users: 100

Dictionary: 35,136,034

Complete Keyspace: 6 hours

Worker: 1 x Nvidia 3090 GPU



Numbers Compared
• 3090 GPU Worker Instance (HW Price: €30k)

1 x GPU 10 x GPU
RACF KDFAES 80,449 H/s 800,210 H/s
RACF DES 7,467 MH/s 73,716 MH/s
NTLM 116,602 MH/s 1,149,035 MH/s

• Amazon EC2 p3.16xlarge (HW Price: €20/h)
1 x GPU 8 x GPU

RACF KDFAES 71,193 H/s 569,550 H/s
RACF DES 5,809 MH/s 46,564 MH/s
NTLM 102,202 MH/s 818,215 MH/s

• Apparently: Average of 85,000 times harder to crack KDFAES than DES via brute force attacks
• And 1,500,000 times harder than NTLM

2010 DES
• 8 Core server system, CPU-only ~ €3000

Off the shelf JtR:
8 x 778,752 = 6,230,016 H/s
Smarter JtR (EPAS: Bitslice DES, AVX/SSE2):
8 x 24,925,141=199,401,128 H/s ~aprox. 33x faster

2020 KDFAES
• Server with 3090 GPU ~ €3000

OpenCL / CUDA:
80,449 H/s

• Amazon 8xGPU p3.16xlarge for ~ 1 week ~€3000
8 x 71,193 = 569,550 H/s

• Between 11 and 2,500 times harder to crack a RACF password in 2020 (KDFAES) compared to 2010 (DES)



Are RACF password hashes now safe?
• Brute-force attacks are no longer a viable option

• Current OpenCL hardware and cloud resources still provide a good speed of between 80,000 and 800,000 H/s

• Hash cracking is still possible, but the keyspace must be trimmed; attackers were doing this anyway

• Anatomy of a real attack:

Minimize the number of users: target service, privileged, developer, TSO accounts only

Use wordlists customized for the current target: leaked passwords, company branding

• Event better, what we do when we run RACF security assessments:

Target a weaker system first, say Active Directory (unsalted), and use the recovered passwords as wordlist

Many users will have identical or similar passwords; nobody needs to crack all of them, one is usually enough



NTLM: Fast Cracking, No Salt
NTLM: Full Audit

Mixed Case

Standard Character Set

12-Character Password

Users: 10,000

Performance: ~80% in 2 hours

Worker: 1 x Nvidia 3090 GPU



NTLM: Results
NTLM: Full Audit

Mixed Case

Standard Character Set

12-Character Password

Users: 10,000

Performance: ~80% in 2 hours

Worker: 1 x Nvidia 3090 GPU



KDFAES: Use Results from NTLM as Wordlist
KDFAES: Preliminary Audit

Upper Case

Standard Character Set

8-Character Password

Users: 100

Dictionary: 8,661

Worker: 1 x Nvidia 3090 GPU



KDFAES: Results
KDFAES: Preliminary Audit

Upper Case

Standard Character Set

8-Character Password

Users: 100

Dictionary: 8,661

Performance: 100% in 2 min

Worker: 1 x Nvidia 3090 GPU



KDFAES: Results
KDFAES: Preliminary Audit

Upper Case

Standard Character Set

8-Character Password

Users: 100

Dictionary: 8,661

Performance: 100% in 2 min

Worker: 1 x Nvidia 3090 GPU



In Brief
• Attacks against password hashes on RACF are still possible, but harder and yield less cracked passwords

• As long as weaker systems exist in the environment, “a chain is only as strong as its weakest link”

• Mainframe security efforts no longer make sense isolated from the rest

• Password cracking is usually NOT the way mainframes are hacked, but it is in 90% of the cases instrumental, so 

make sure strong passwords are used, and are not the same or similar to other, weaker systems

• Password spraying can be used to hack mainframes too, so make sure that leaked passwords are detected

• N.B. RRSF: Make sure all systems use KDFAES, as the password is transmitted in clear text and hashed by each 

RACF instance separately with KDFAES or DES, as configured.



Questions we ask ourselves …
1. Have you encountered any real life cases where password cracking of exposed RACF db was the reason, or at least instrumental in a successful 

mainframe security attack (no names)? How about employing such methods yourself as an auditor / penetration tester?

2. Password spraying, and leaked passwords in general: what is the actual danger, and what is the awareness we have today in enterprises, in general, but 

also specifically for mainframe users? Would alerting prevent such an attack?

3. Stronger password hashing: Are we better off now? Hash cracking is only a matter of interest if the RACF database is exposed. Does it help security, by 

making the system safer, does it help people to use weaker passwords undetected by analytics tools? 

4. Adding another factor besides the password would make things more secure, at least for interactive users. Is IBM MFA AZF????1 getting any traction? 

Acceptance is bad amongst users, PSD2 has been challenged in Germany, do we know of any adaptive/conditional authentication for RACF?

5. Obscurity vs. security, would it make sense that intended changes in password crypto is based on standards and fully disclosed, instead of keeping it 

secret? Would eliminating potential mistakes – see the DES password phrases – outweigh the potential / imaginary risks or disclosing the algo?


	Mainframe passwords revisited: impact of new security mechanisms
	Slide Number 2
	Slide Number 3
	Slide Number 4
	The Tools: Cluster, Big Server, Amazon EC2
	DES Performance: Brute Force
	KDFAES Performance: Brute Force
	DES Performance: Wordlist
	KDFAES Performance: Wordlist
	Slide Number 10
	Slide Number 11
	NTLM: Fast Cracking, No Salt
	NTLM: Results
	KDFAES: Use Results from NTLM as Wordlist
	KDFAES: Results
	KDFAES: Results
	Slide Number 17
	Slide Number 18

